Den Helmholtz-Preis 2020 in der Kategorie „Anwendung“ erhält ein Team aus Forschern der Humboldt-Universität zu Berlin und der Albert-Ludwigs-Universität Freiburg. Maximilian Kockert, Danny Kojda, Rüdiger Mitdank, Anna Mogilatenko und Saskia F. Fischer (Humboldt-Universität Berlin) sowie Zhi Wang, Johannes Ruhhammer, Michael Kröner und Peter Woias (Albert-Ludwigs-Universität Freiburg) ist es gelungen, erstmals ein standardisierbares Verfahren zur Messung von Strukturen im Bereich von Nanometern (tausendstel Mikrometern) zu entwickeln.
Das Problem bei Materialien mit derart kleinen Abmessungen ist, dass sie oftmals ganz andere Eigenschaften als die entsprechenden makroskopischen Materialien haben. Denn auf der Nanoebene spielt neben der Art des Materials die Form der Oberflächen eine große Rolle, also die Abmessungen oder die Oberflächenstruktur. Der vor hundert Jahren im Bauhaus geprägte Satz für Industriedesign und Architektur „Form follows function“ muss für Materialparameter auf der Nanometerskala häufig auf den Kopf gestellt werden: „Form defines function“. Dies ermöglicht, dass Materialparameter durch die Formgebung maßgeschneidert werden können. Umso wichtiger ist es, die Materialparameter dann auch genau und zuverlässig zu messen – was für die Metrologie eine Herausforderung ist.
Das Forscherteam stellt in seiner Arbeit nun standardisierbare Präzisionsmessungen des sogenannten Seebeck-Koeffizienten vor, die sich von ihrem Modellsystem, nämlich Drähten aus Silber mit Nanometer-Durchmesser und einer kristallinen Struktur (Einkristallen), auf andere Nanostrukturen und auch auf weitere Parameter ausweiten lassen. Damit hat die Gruppe den Nachweis erbracht, dass Hochpräzisionsmessungen für die vollständige thermoelektrische Charakterisierung (also die Messung von elektrischer Leitfähigkeit, Wärmeleitfähigkeit und des Seebeck-Koeffizienten) auch bei metallischen Nanomaterialien in standardisierter Weise über einen großen Temperaturbereich möglich sind. Die Ergebnisse wurden in Scientific Reports veröffentlicht.